THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH1010 I/J University Mathematics 2015-2016
Suggested Solution to Problem Set 5

1. Note that

$$
\begin{aligned}
\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h} & =\lim _{h \rightarrow 0^{+}} \frac{\cos (0+h)-\cos (0)}{h} \\
& =\lim _{h \rightarrow 0^{+}} \frac{\cos h-1}{h} \\
& =\lim _{h \rightarrow 0^{+}}-\frac{1}{2}\left(\frac{\sin ^{2}\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)^{2}}\right) h \\
& =\left(-\frac{1}{2}\right)(1)^{2}(0) \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{h \rightarrow 0^{-}} \frac{f(0+h)-f(0)}{h} & =\lim _{h \rightarrow 0^{+}} \frac{1-\cos (0)}{h} \\
& =\lim _{h \rightarrow 0^{-}} \frac{0}{h} \\
& =\lim _{h \rightarrow 0^{-}} 0 \\
& =0
\end{aligned}
$$

$\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0^{-}} \frac{f(0+h)-f(0)}{h}=0$ and so $\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}$ exists which means $f(x)$ is differentiable at $x=0$. In particular, $f^{\prime}(0)=0$.
2. Note that

$$
\begin{aligned}
\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h} & =\lim _{h \rightarrow 0^{+}} \frac{h^{2 / 3}}{h} \\
& =\lim _{h \rightarrow 0^{+}} \frac{1}{h^{1 / 3}}
\end{aligned}
$$

which goes to positive infinity and it means $\lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}$ does not exist. Therefore, $\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}$ does not exist and $f(x)$ is not differentiable at $x=0$.
3. Note that $f(x)$ is differentiable at $x=1$, so

$$
\begin{aligned}
\lim _{h \rightarrow 0^{+}} \frac{f(1+h)-f(1)}{h} & =\lim _{h \rightarrow 0^{-}} \frac{f(1+h)-f(1)}{h} \\
\lim _{h \rightarrow 0^{+}} \frac{(a(1+h)+b)-1}{h} & =\lim _{h \rightarrow 0^{-}} \frac{(1+h)^{3}-1}{h} \\
\lim _{h \rightarrow 0^{+}} \frac{a h+(a+b-1)}{h} & =\lim _{h \rightarrow 0^{-}} 3+3 h+h^{2} \\
\lim _{h \rightarrow 0^{+}} \frac{a h+(a+b-1)}{h} & =3
\end{aligned}
$$

First of all, the limit on the left hand side exists if and only if $a+b-1=0$. When $a+b-1=0$, the limit on the left hand side is a which has to be 3 by the equation. Therefore, we have $a=3$ and $b=-2$.
4. (a) $f(0)=\lim _{n \rightarrow \infty} \frac{a\left(n^{0}-n^{-0}\right)}{n^{0}+n^{-0}}=\lim _{n \rightarrow \infty} 0=0$.
(b) If $x>0$,

$$
\begin{aligned}
f(x) & =\lim _{n \rightarrow \infty} \frac{a\left(n^{x}-n^{-x}\right)}{n^{x}+n^{-x}} \\
& =\lim _{n \rightarrow \infty} \frac{a\left(1-n^{-2 x}\right)}{1+n^{-2 x}} \\
& =a
\end{aligned}
$$

If $x<0$,

$$
\begin{aligned}
f(x) & =\lim _{n \rightarrow \infty} \frac{a\left(n^{x}-n^{-x}\right)}{n^{x}+n^{-x}} \\
& =\lim _{n \rightarrow \infty} \frac{a\left(n^{2 x}-1\right)}{n^{2 x}+1} \\
& =-a
\end{aligned}
$$

(c) If $f(x)$ is continuous at $x=0$, we have

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} f(x)=f(0)
$$

Therefore, we have $a=0$.
5. Let $x \in \mathbb{R}$. We have

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} & =\lim _{h \rightarrow 0} \frac{(g(x) f(h)+f(x) g(h))-g(x)}{h} \\
& =\lim _{h \rightarrow 0} g(x)\left(\frac{f(h)-1}{h}\right)+f(x)\left(\frac{g(h)}{h}\right) \\
& =\lim _{h \rightarrow 0} g(x)\left(\frac{f(h)-f(0)}{h}\right)+f(x)\left(\frac{g(h)-g(0)}{h}\right) \\
& =g(x) f^{\prime}(0)+f(x) g^{\prime}(0) \\
& =f(x)
\end{aligned}
$$

Therefore, $g^{\prime}(x)=f(x)$.

